Hamlet of Tuktoyaktuk, Town of Inuvik Government of Northwest Territories

ISSUED FOR USE

RESPONSE TO INFORMATION REQUESTS RELATIVE TO MATERIAL SOURCES
RAISED AT TECHNICAL SESSIONS; AUGUST 22 AND 23, 2012
FROM THE ENVIRONMENTAL IMPACT REVIEW BOARD
FOR CONSTRUCTION OF THE
INUVIK TO TUKTOYAKTUK HIGHWAY, NWT

EIRB FILE NO. 02/10-05

August 31, 2012

ACRONYMS

EIS Environmental Impact Statement

GNWT Government of the Northwest Territories

IR Information Request

The Developers of the proposed Inuvik to Tuktoyaktuk Highway are pleased to provide these responses to the Environmental Impact Review Board's Information Requests raised at the Technical Sessions held in Inuvik on August 22 and 23, 2012 relative to material sources.

Please note that new tables or figures, created for the most recent information requests, have been numbered according to their respective IR Number. Any tables or figures from the EIS or previous response documents have retained their original number.

IR Number: TS-1

Source: Environmental Impact Review Board

To: GNWT Department of Transportation, Town of Inuvik, Hamlet of Tuktoyaktuk

Subject: Methodology to Determine Granular Estimates in Material Sources and Methods for

Protection of Massive Ice Layers within Material Sources

Preamble

The Board would like to confirm the accuracy of the granular resources amounts as reported for the 7 borrow pits investigated, but in particular, Source 170 and 314/325 which are the only 2 proposed to be used for construction/maintenance of the Highway. In some borrow sources (e.g., Source 170), it appears that there is massive ice (or at least substantial thickness of ice) within the source. The Board wants to know whether there will be any measures to protect the degradation of this ice, for example by leaving it covered with granular material.

Request

- 1. Provide detailed methodology (step by step), that explains the process for using borehole log information to determine granular estimates for the entire source. This would include methods for "interpolating" between boreholes, classifying overburden, accounting for ice, etc..
- 2. Where ice was encountered at depth in the boreholes (e.g., 170-102 and others at 170), was granular material overlying the ice used to calculate the granular volume of the deposit?
- 3. What measures will be used to protect the degradation of massive ice at depth within borrow sources?

Developer Response: TS-1.1

The boreholes were drilled using an approximate spacing of 100 m on a grid pattern across the selected borrow areas, with the intent that each borehole was representative of the soils on a 50 m radius around the borehole location. As such, the volumes of material were calculated using the radius of 50 m.

Where boreholes were spaced greater than 100 m apart, the radius of only 50 m was still used. Where boreholes were drilled closer than 100 m apart, the reduced radius was used (i.e. if the boreholes were drilled 90 m apart, the radius used in volume estimation for those boreholes was 45 m).

At each borehole, the depth and thickness of each stratum was logged. To estimate the volumes (quantities) of materials present in the borehole, it was inferred that these strata extended horizontally outwards from the borehole for a radius of 50 m (or smaller as described above) around the borehole. The volumes (quantity) of material present at each borehole location were calculated from the thickness of each stratum using the radius of 50 m (or smaller as required) to provide a 'column' of soil at each borehole location. Table TS-1-1 provides an example from borehole 170-1-1.

			•	,	
Soil Description	Soil Stratum	Soil Stratum	Soil Stratum	Borehole	Estimated
	Starting	Ending	Thickness (m)	Coverage Area	Soil Volume
	Elevation	Elevation		(based on 50 m	(m³)
	(m)	(m)		radius) (m²)	
Sand & Gravel	39.4	33.9	5.50	Area = $\pi (50 \text{ m})^2$ =	Volume =
				7,850	5.50 x 7,850
					= 43,175
Gravel	33.9	32.5	1.40	7,850	10,990

Table TS-1-1: Calculation of Soil Volume at Borehole 170-1-1 (Surface Elevation 39.4 m)

Materials described on the logs as a mixture of soils and ice (i.e. Ice & Sand) were not included in the estimated material quantities. Only those soils logged with the predominant material types of Sand, Sand & Gravel, or Gravel were included in the material quantity estimates.

The estimated quantities provided are a bulk summation of all layers of aggregate (Sand, Sand & Gravel, Gravel) encountered in the boreholes per borrow source using this 'column' approach.

The overburden quantities noted are a summation of the volumes of any non-aggregate materials (organics, silt, etc) present at surface over aggregate deposits in the order of at least 1 m thickness.

Figure TS-1-1 provides a summary of soil volumes calculated from each borehole at borrow source 170.

It is understood that some areas of the borrow sources may not be developed due to the presence of the unsuitable materials for economic or construction constraints; however, the details pertaining to borrow source pit development are yet to be finalized as they are currently being developed and are to be provided within the pit management plans for the borrow sources.

It is envisioned that all mine operations (excavation) will occur in the winter months, and that any areas with massive ice exposed at the base of the excavation could be covered with overburden and organics during reclamation at the end of the winter mining season to minimize thaw settlement during the summer months.

DOM	E HOLE CO-	ORDIN	ATE TABLE					Borehole	
								Coverage Area (50 m	Estimated Soil Volume (m3)
7673927.6	575942.7	39.4	BOREHOLE BH ASB - 170-1-1	39.40 33.90	33.90 32.50	5.50 1.40	SAND AND GRAVEL GRAVEL	7850	43175
7673819.7	576028.9	40.5	BH ASB - 170-1-2	40.50 40.20	40.20 36.40	0.30 3.80	SAND AND GRAVEL SAND	7850 7850 7850	10990 2355 29830
7673858.0	575919.2	40.3	BH ASB - 170-1-3	36.40 40.30	33.80 40.10	2.60 0.20	ICE ORGANICS	7850 7850 7850	20410 1570
, 0, 303010	57551512	-10.0	511105 11010	40.10 39.10	39.10 35.10	1.00 4.00	SAND SILT	7850 7850 7850	7850 31400
7673715.7	576070.3	36.7	BH ASB - 170-1-4	35.10 36.70	33.40 36.10	1.70 0.60	ICE SILT	7850 7850	13345 4710
7673723.2	575968.9	38.9	BH ASB - 170-1-5	36.10 38.90	29.50 38.40	6.60 0.50	ICE ORGANICS	7850 7850	51810 3925
7673756.5	575905.2	40.3	BH ASB - 170-1-6	38.40 40.30	31.70 37.60	6.70 2.70	ICE SAND	7850 7850	52595 21195
				37.60 36.60	36.60 34.70	1.00 1.90	ICE SAND	7850 7850	7850 14915
7673655.3	576035.1	39.5	BH ASB - 170-1-7	34.70 39.50	33.40 38.00	1.30 1.50	ICE GRAVEL	7850 7850	10205 11775
7673664.7	575972.7	40.7	BH ASB - 170-1-8	38.00 40.70	32.60 39.60	5.40 1.10	SAND AND GRAVEL	7850 7850	42390 8635
				39.60 38.40	38.40 34.90	1.20 3.50	ICE SAND	7850 7850	9420 2747 5
7673654.4	575867.0	40.0	BH ASB - 170-1-9	34.90 40.00	33.50 38.80	1.40 1.20	SAND AND GRAVEL	7850 7850	10990 9420
				38.80 36.20	36.20 34.50	2.60 1.70	SILT SAND	7850 7850	20410 13345
7673569.8	575943.4	33.7	BH ASB - 170-1-10	34.50 33.70	32.80 33.40	1.70 0.30	ICE ORGANICS	7850 7850	13345 2355
7572502.0	575024.0		DU 460 470 4 44	33.40 32.30	32.30 25.30	1.10 7.00	SAND AND GRAVEL	7850 7850	8635 54950
7673583.0 7673503.1	575834.9 575867.0	37.4 36.6	BH ASB - 170-1-11 BH ASB - 170-1-12	37.40 36.60	30.40 34.20	7.00 2.40	SAND AND GRAVEL GRAVEL	7850 7850	54950 18840
	575000 4		DU 400 470 4 40	34.20 31.10	31.10 29.90	3.10 1.20	SAND ICE	7850 7850	24335 9420
7673420.5	575893.4 575822.6	34.7	BH ASB - 170-1-13 BH ASB - 170-1-14	34.70 31.80 37.60	31.80 28.60 37.00	2.90 3.20 0.60	SAND AND GRAVEL ICE SILT	7850 7850	22765 25120
6/341/.3	5/5822.0	37.6	ВН АЗВ - 170-1-14	37.00	32.10	4.90	SAND	7850 7850	4710 38465
673351.8	575878.2	38.6	BH ASB - 170-1-15	32.10 38.60 37.20	27.70 37.20 34.60	4.40 1.40 2.60	SAND AND GRAVEL SILT	7850 7850	34540 10990
673242.4	575957.4	38.2	BH ASB - 170-1-16	34.60	34.60 32.50 37.90	2.60 2.10 0.30	ICE ORGANICS	7850 7850	20410 16485
013242.4	3/355/.4	36.Z	1/0-1-16 - מכא ווע	38.20 37.90 35.50	37.90 35.50 33.30	0.30 2.40 2.20	SAND ICE	7850 7850	2355 18840
				33.30 32.70	33.30 32.70 31.30	0.60 1.40	SAND ICE	7850 7850 7850	17270 4710 10990
7673218.4	575881.4	39.7	BH ASB - 170-1-17	32.70 39.70 37.40	31.30 37.40 34.80	2.30 2.60	SILT ICE	7850 7850 7850	10990 18055 20410
673283.1	575838.7	40.2	BH ASB - 170-1-18	40.20 40.10	40.10 37.90	0.10 2.20	ORGANICS SILT	7850 7850 7850	20410 785 17270
				37.90 35.00	35.00 34.70	2.90 0.30	ICE SILT	7850 7850 7850	22765 2355
7673257.2	575791.0	39.4	BH ASB - 170-1-19	34.70 39.40	33.30 37.00	1.40 2.40	ICE GRAVEL	7850 7850 7850	10990 18840
7673182.7	576035.0	33.8	BH ASB - 170-1-20	37.00 33.80	32.50 33.20	4.50 0.60	ICE ORGANICS	7850 7850	35325 4710
				33.20 31.50	31.50 29.40	1.70 2.10	SILT SAND	7850 7850	13345 16485
673126.6	575879.4	34.6	BH ASB - 170-1-21	29.40 34.60	26.90 33.10	2.50 1.50	ICE SAND	7850 7850	19625 11775
673165.3	575833.2	38.0	BH ASB - 170-1-22	33.10 38.00	28.50 36.60	4.60 1.40	ICE SAND AND GRAVEL	7850 7850	36110 10990
7673188.9	575766.8	37.6	BH ASB - 170-1-23	36.60 37.60	31.10 37.40	5.50 0.20	ICE ORGANICS	7850 7850	43175 1570
				37.40 36.70	36.70 35.20	0.70 1.50	SILT SAND	7850 7850	5495 11775
7673089.2	576055.2	35.3	BH ASB - 170-1-24	35.20 35.30	30.70 35.00	4.50 0.30	GRAVEL ORGANICS	7850 7850	35325 2355
				35.00 33.90	33.90 28.40	1.10 5.50	SAND ICE	7850 7850	8635 43175
7673104.2	575983.3	35.1	BH ASB - 170-1-25	35.10 34.50	34.50 32.80	0.60 1.70	ORGANICS SAND	7850 7850	4710 13345
7673096.8	575834.5	34.0	BH ASB - 170-1-26	32.80 34.00	29.00 33.20	3.80 0.80	ICE SILT	7850 7850	29830 6280
7673029.2	575792.1	32.7	BH ASB - 170-1-27	33.20 32.70	24.00 31.80	9.20 0.90	SAND SAND	7850 7850	72220 7065
7673036.8	575722.2	31.2	BH ASB - 170-1-28	31.80 31.20	27.20 29.10	4.60 2.10	ICE ICE	7850 7850	36110 16485
				29.10 26.60	26.60 21.20	2.50 5.40	SAND AND GRAVEL	7850 7850	19625 42390
7673009.5	575665.3	29.8	BH ASB - 170-1-29	29.80 28.30	28.30 27.40	1.50 0.90	SAND AND GRAVEL	7850 7850	11775 7065
2572055.0	F75564.6		DU 460 470 4 20	27.40 22.80	22.80 21.70	4.60 1.10	SAND GRAVEL	7850 7850	36110 8635
7673056.8	575561.6	25.7	BH ASB - 170-1-30	25.70 23.90	23.90 23.30	1.80 0.60 4.50	SAND AND GRAVEL GRAVEL ICE	7850 7850	14130 4710
7673070.0	575490.5	25.9	BH ASB - 170-1-31	23.30 25.90 22.90	18.80 22.90 20.60	3.00 2.30	SAND AND GRAVEL GRAVEL	7850 7850 7850	35325 23550
7672947.8	575709.1	29.7	BH ASB - 170-1-32	29.70 28.50	28.50 26.80	1.20 1.70	SAND AND GRAVEL SAND	7850 7850 7850	18055 9420 13345
7672830.1	575747.7	24.2	BH ASB - 170-1-33	26.80 24.20	22.80 23.60	4.00 0.60	ICE GRAVEL	7850 7850 7850	31400 4710
0,2000.2	57574777		5117105 170 1 00	23.60 22.10	22.10 20.20	1.50 1.90	SAND GRAVEL	7850 7850 7850	11775 14915
				20.20	19.60 18.70	0.60 0.90	SILT ICE	7850 7850	4710 7065
7672823.3	575597.6	28.8	BH ASB - 170-1-34	28.80 27.90	27.90 26.40	0.90 1.50	SAND GRAVEL	7850 7850 7850	7065 11775
7672868.5	575577.3	29.6	BH ASB - 170-1-35	26.40 29.60	24.20 29.30	2.20 0.30	ICE ORGANICS	7850 7850	17270 2355
7672841.5	575515.5	27.3	BH ASB - 170-1-36	29.30 27.30	24.30 26.40	5.00 0.90	ICE ICE	7850 7850	39250 7065
				26.40 25.80	25.80 24.90	0.60 0.90	SAND AND GRAVEL SAND	7850 7850	4710 7065
				24.90 23.00	23.00 20.40	1.90 2.60	GRAVEL ICE	7850 7850	14915 20410
672843.2	575439.3	24.3	BH ASB - 170-1-37	24.30 23.70	23.70 22.20	0.60 1.50	SILT SAND AND GRAVEL	7850 7850	4710 11775
				22.20 20.80	20.80 18.50	1.40 2.30	SAND ICE	7850 7850	10990 18055
672968.4	576054.3	30.9	BH ASB - 170-1-38	30.90 30.80	30.80 30.30	0.10 0.50	ORGANICS SAND AND GRAVEL	7850 7850	785 3925
				30.30 29.40	29.40 27.40	0.90 2.00	GRAVEL SAND	7850 7850	7065 15700
7672885.2	576039.4	32.2	BH ASB - 170-1-39	27.40 32.20	24.00 32.10	3.40 0.10	ICE ORGANICS	7850 7850	26690 785
				32.10 31.90	31.90 29.80	0.20 2.10	GRAVEL SAND	7850 7850	1570 16485
				29.80 28.20 27.30	28.20 27.30 25.20	1.60 0.90 2.10	SAND SAND GRAVEL	7850 7850	12560 7065
672022 2	576000 4	30 C	RH ACR - 170 1 40	25.20	22.20	3.00	SAND	7850 7850	16485 23550
7672822.3	576009.4	29.6	BH ASB - 170-1-40	29.60 29.30 29.00	29.30 29.00 27.20	0.30 0.30 1.80	ORGANICS GRAVEL SILT	7850 7850	2355 2355
				29.00 27.20 25.60	27.20 25.60 23.80	1.80 1.60 1.80	ICE SILT	7850 7850 7850	14130 12560 14130
7672744.5	576008.6	27.9	BH ASB - 170-1-41	27.90	27.80	0.10	ORGANICS SILT	7850 7850	14130 785
7672650.0	576055.4	34.7	BH ASB - 170-1-42	27.80 34.70 34.60	21.00 34.60 34.10	6.80 0.10 0.50	ORGANICS SAND	7850 7850	53380 785
7672574.0	576102.9	36.2	BH ASB - 170-1-43	34.10 36.20	27.80 35.60	6.30 0.60	ICE ORGANICS	7850 7850	3925 49455 4710
. 3,23/4.U	570102.9	30.2	DIT A3D - 1/U-1-43	35.60 34.70	34.70 33.50	0.90 1.20	SAND ICE	7850 7850 7850	4710 7065 9420
	 			33.50	33.50 32.50 28.90	1.00	SAND SAND AND GRAVEL	7850 7850 7850	9420 7850
7673802.3	575958.6	41.6	BH ASB - 170-1-44	32.50 28.90 41.60	27.10 40.20	3.60 1.80 1.40	SAND SAND	7850 7850 7850	28260 14130 10990

Estimated Total Sand Volume	602,095	(m ³)
Estimated Total Gravel Volume	95,770	(m³)
Estimated Total Sand & Gravel Volume	348,540	(m ³)
Estimated Total Ice Volume	938,860	(m ³)
Estimated Total Silt Volume	226,080	(m ³)
Estimated Total Organics Volume	36,895	(m ³)

Developer Response: TS-1.2

Yes. Aggregates present overlying ice are included in the estimated quantities. The estimated quantities provided are a bulk summation of all layers of aggregate (Sand, Sand & Gravel, and Gravel) encountered in the boreholes per borrow source. No separation or discounting of material was undertaken relative to presence of massive ice above or below the materials encountered.

Developer Response: TS-1.3

At the end of each winter open faces and areas of operation will be reclaimed in accordance with the pit management plan, permit conditions and relevant guidelines. Areas of ice will be left with 1 to 2 m of cover. If sufficient volume of overburden material is available from the initial stripping operation, this overburden will be used as cover for the ice. Where sufficient volume of overburden material is not available, borrow material will be left in-situ to a depth that is sufficient to achieve the necessary cover when the available overburden material is placed. Estimates of available material quantities have been adjusted from those provided in the borrow source investigation reports (Kavik-Stantec 2012) to account for borrow material to be left in place.

IR Number: TS-2

Source: Environmental Impact Review Board

To: GNWT Department of Transportation, Town of Inuvik, Hamlet of Tuktoyaktuk

Subject: Estimated Material Requirements and Primary Material Sources

Preamble

The Board would like to confirm the estimated material requirements for construction and operations of the Highway over the 50 year operational period. A table of estimated material requirements was presented at the Technical Session on August 23, 2012, but the estimate of total material requirements shown in that table appears to differ from estimates previously provided. The Board would also like to confirm the material sources to be used for construction and operations given the prospect of adjusting estimates of available material in the borrow sources due to the need to retain a cover over natural ice layers. A greater understanding of the potential area where development is likely to occur for each material source will also aid in the assessment.

Request

- 1. Confirm the estimated material requirements for construction and operations of the Highway over the 50 year operational period.
- 2. Confirm the material sources to be used for construction and operations, and the estimated volume of material to be taken from each.
- 3. Provide airphotos for each material source showing an outline of the area where development is likely to occur.

Developer Response: TS-2.1

Table TS-2-1 shows the estimated materials requirements for construction and operations of the Highway over the 50 year period. The total estimated quantity shown for construction and operations is the same as that presented in the Technical Session on August 23, 2012. The estimated quantities are for the preferred alignment - Alternative 3, 2010 Minor Realignment. Estimated quantities for construction of Alternative 3 were first shown in Table IR2-1 of the Developer's response to January 16, 2012 Information Requests. A minor correction has been made in the quantity estimates and the total estimated material requirements for construction are presented in the table below.

Estimated quantities for operation of the Highway (maintenance and rehabilitation) for the 50 year period were previously presented in Developer's response to IR 90.2 (March 2012, page 4, Table 1) and the estimated quantities shown at that time were for a 137 km alignment. Alternative 3 is 135.5 km in length. The amount of material estimated for operation of the 135.5 km of highway of the 50 year period for 135.5 km is slightly lower. The total estimated material requirements for operation of the Highway over the 50 year period is presented in the table below. The quantity of material

required for years 1 to 20 is greater than that required for years 21 to 40 (for common) as the majority of the compaction and consolidation is anticipated to occur in the first 20 year period.

Table TS-2-1: Estimated material requirements for the 50-year period

Source	Construction Embankment (m³)	Construction Surfacing (m³)	Operational Common & Crush - Year 1 to 20 (m³)	Operational Common & Crush - Year 21 to 40 (m³)	Operational Common & Crush - Year 41 to 50 (m³)	Estimated Total Requirement (m³)	Estimated Amount Available in Source (m³)
PW2	676,000	-	-	-	-	676,000	765,000 ¹
325/314	919,000	82,300	558,750	300,000	89,000	1,949,050	2,124,800 ²
309	979,000	82,300	220,000	175,000	-	1,456,300	1,500,000 ³
174	741,250	82,400	900,000	687,250	296,500	2,707,400	3,280,000 ⁴
170	462,750	-	-	-	-	462,750	672,540 ⁵
177	677,000	-	238,500	100,000	-	1,015,500	1,510,000 ⁶
Totals	4,455,000	247,000	1,917,250	1,262,250	385,500	8,267,000	9,852,340

Notes:

¹The reference for this source is Public Works Canada, 1976. Report: geotechnical investigation mile 970 to mile 1059 (Inuvik to Tuktoyaktuk), Mackenzie Highway: combined data - 1976 to 1980 / Canada. Public Works Canada. Western Region. October 1976. ASTIS 35303. PWC 1976 describes the estimated amount available in the source as "1,000,000+ cu. yds.", and "unlimited". We have assumed that the material available in the source is 765,000 m³.

²The reference for this source is Kavik-Stantec Inc., 2012. Inuvik - Tuktoyaktuk Highway 2012 Borrow Source Investigation, Borrow Source 314/325 Summary Report. Prepared for E Gruben's Transport Ltd. July 2012. The estimated amount available in the source has been adjusted to account for material left in-situ over massive ice.

³ Ripley, Klohn & Leonoff International Limited, 1972. Granular materials inventory, Zone III. Prepared for Department of Indian Affairs and Northern Development. 1972.

⁴ R.M Hardy & Associates Ltd., 1977. Granular Materials Inventory, Tuktoyaktuk, Northwest territories. Prepared for Department of Indian and Northern Development. August 1977.

⁶The reference for this source is R.M Hardy & Associates Ltd., 1977. Granular Materials Inventory, Tuktoyaktuk, Northwest territories. Prepared for Department of Indian and Northern Development. August 1977. The estimated amount of available material source reported is 1,910,000 m³. This amount has been adjusted to account for the 400,000 m³ used to construct the access road from Tuktoyaktuk to Source 177.

Developer Response: TS-2.2

The material sources to be used for construction and operation of the proposed highway, and the estimated amount of material to be taken from each source is provided in the table above.

The next steps for the material sources listed include:

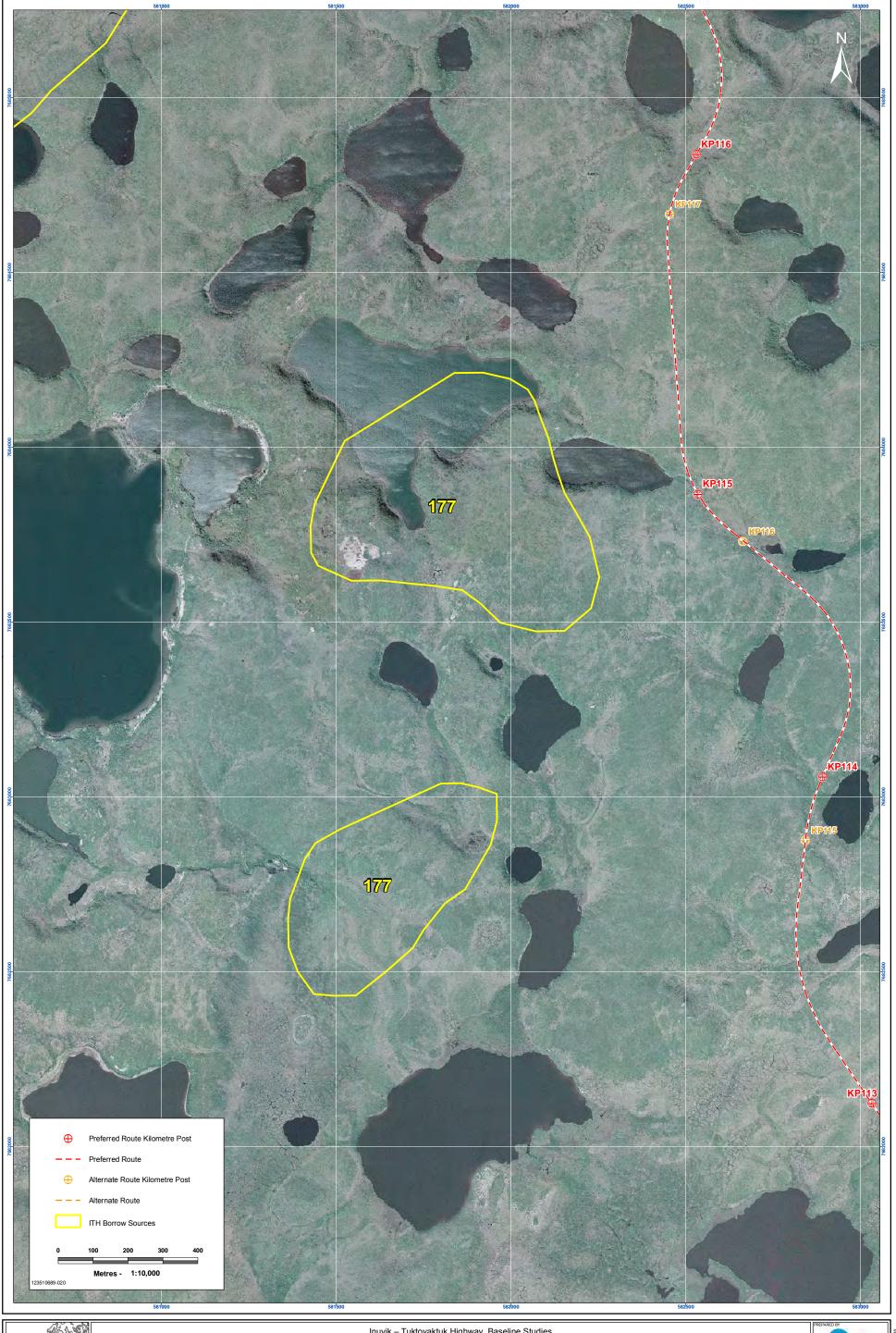
- Investigation (drilling) of Sources PW2, 309, 174, 177 to confirm material quantity and quality estimates and conduct site-specific studies, as needed, to support the regulatory approvals process (land use and quarry permits).
- Develop Pit Management Plans and secure Land Use and Quarry Permits for all material sources prior to construction.

Sources 173/305 and 307 are included as secondary sources for construction and operation of the Highway. The estimated available in these sources is 1,890,000 m³ (Kavik-Stantec 2012). With an adjustment for cover over ice in the pit the estimated available in these sources could be 1,700,500 m³ (additional to the available volume shown in Table TS-1-1). It is not anticipated that any material will be extracted from these sources, but they are retained in consideration should one of the primary sources be found during the investigation noted above, to not have the quantity of material currently estimated. If needed, Pit Management Plans will be developed for these two secondary sources, and Land Use and Quarry Permits will be secured prior to construction.


Developer Response: TS-2.3

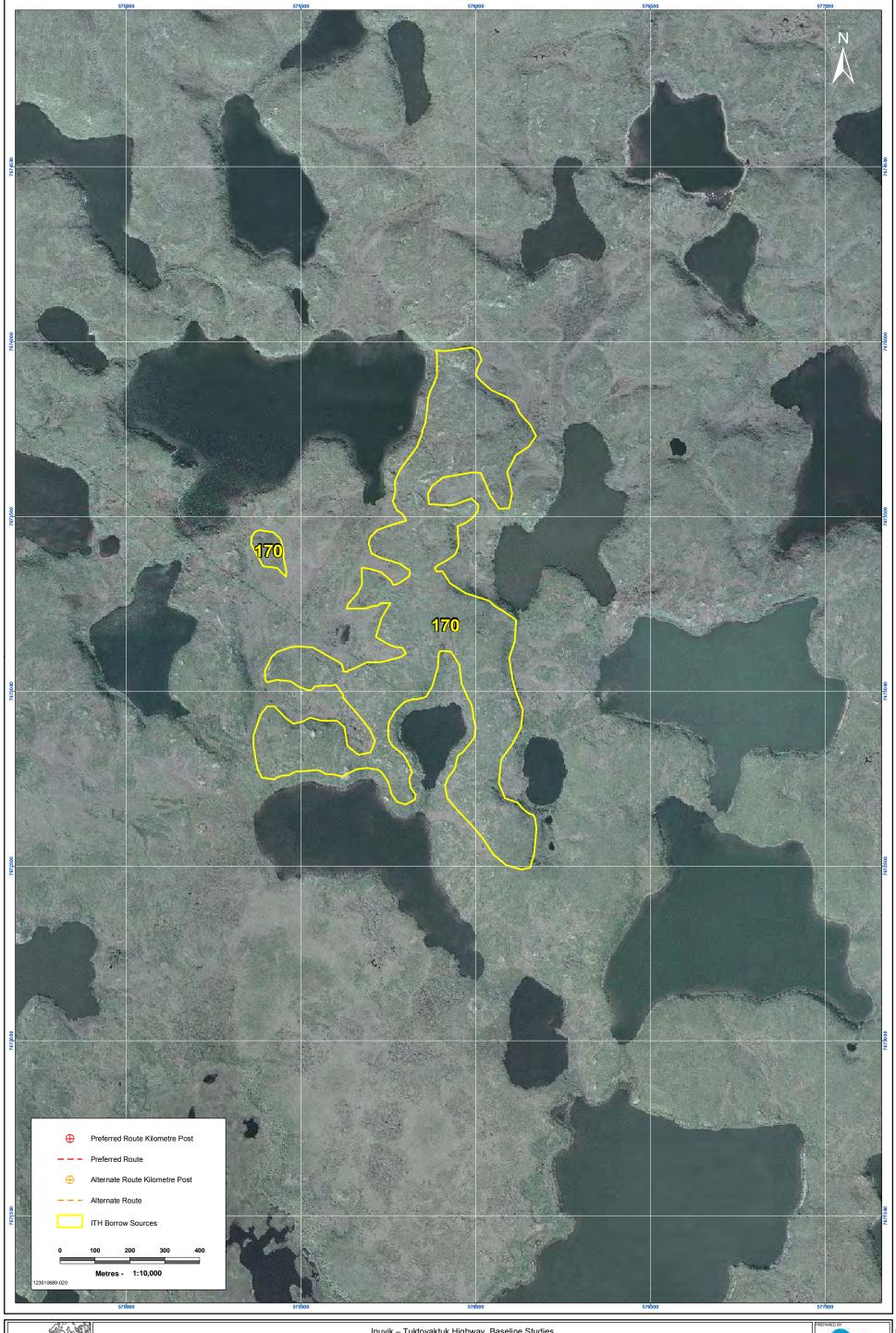
Airphotos of each of the primary sources showing the area within which development of the source will occur are attached. Similar airphotos for the secondary sources are included in the borrow source investigation reports submitted previously (Kavik-Stantec 2012).

⁵ The reference for this source is Kavik-Stantec Inc., 2012. Inuvik - Tuktoyaktuk Highway 2012 Borrow Source Investigation, Borrow Source 170 Summary Report. Prepared for E Gruben's Transport Ltd. July 2012. The estimated amount available in the source has been adjusted to account for material left in-situ over massive ice.



Borrow Source 177 North
1:10,000
Area at Borrow Source: 149.82 hectares (Land)

Acknowledgements: Original Drawing by KAVIK-STANTECLTD



Borrow Source 177 South
1:10,000
Area at Borrow Source: 149.82 hectares (Land)

Acknowledgements: Original Drawing by KAVIK-STANTEC LTD

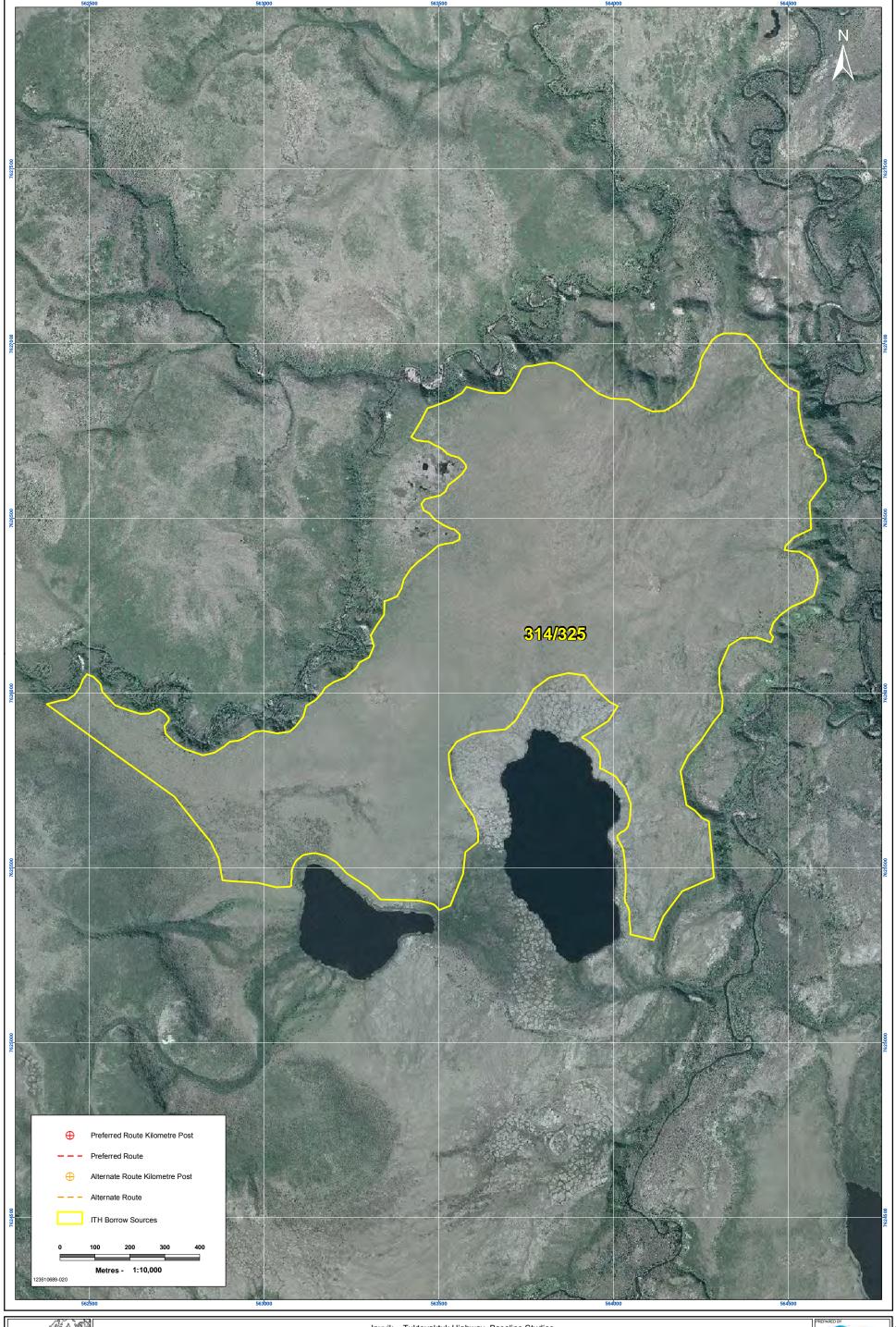
Borrow Source 170
1:10,000
Area at Borrow Source: 43.30 hectares (Land)

Borrow Source 174 North
1:10,000
Area at Borrow Source: 521.72 hectares (Land)

Acknowledgements: Original Drawing by KAVIK-STANTECLTD

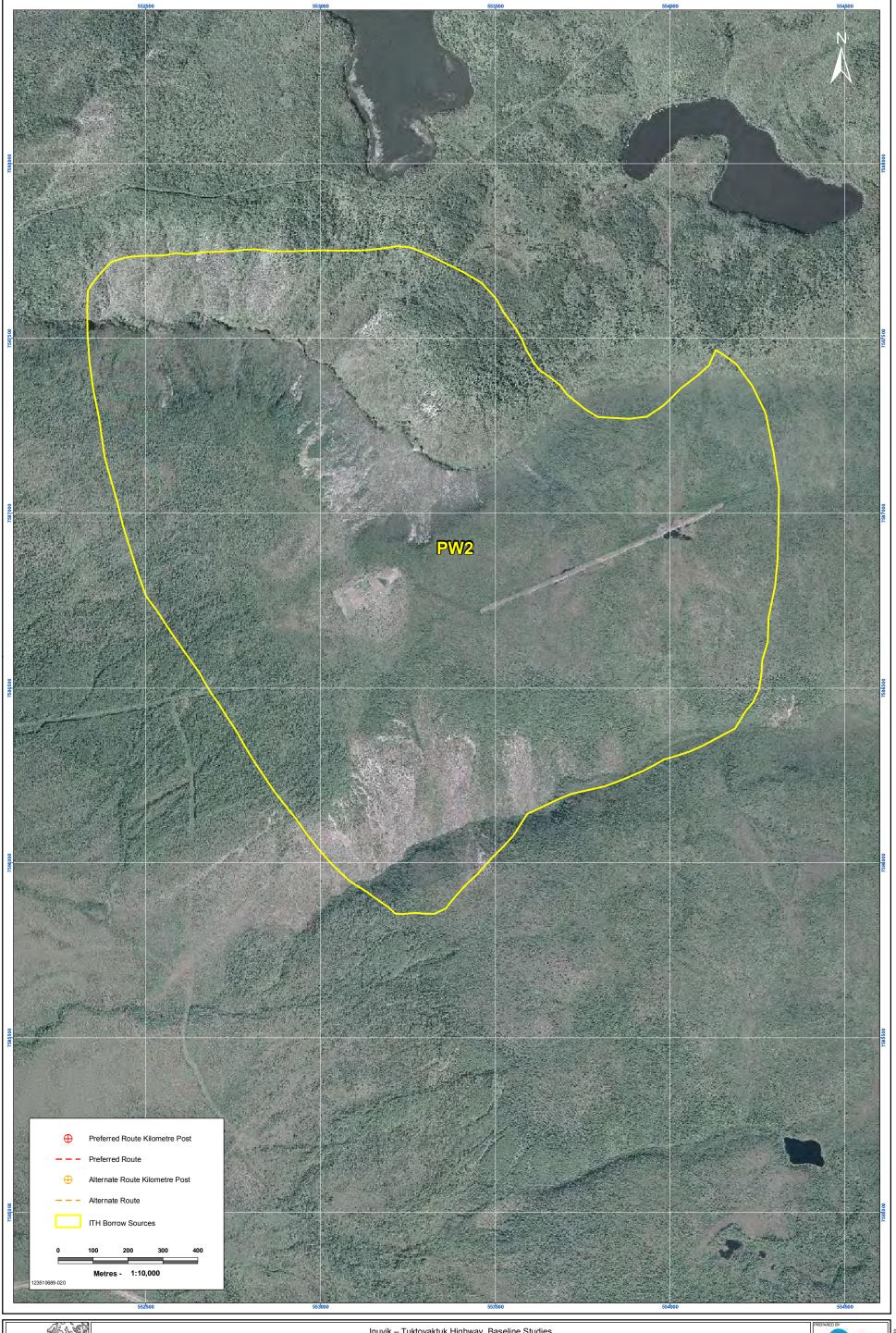
Borrow Source 174 South
1:10,000
Area at Borrow Source: 521.72 hectares (Land)

Acknowledgements: Original Dawing by KAVIK-STANTECLTD



Borrow Source 309
1:10,000
Area at Borrow Source: 216.96 hectares (Land)

Acknowledgements: Original Drawling by KAVIK-STANTECLTD


6 of 8

Borrow Source 314/325 1:10,000 Area at Borrow Source: 329.17 hectares (Land)

Borrow Source PW2
1:10,000
Area at Borrow Source: 24.15 hectares (Land)

Acknowledgements: Original Drawing by KAVIK-STANTECLTD

